MTab4D


MTab4DBpedia: Semantic Annotation for Tabular Data with DBpedia

Demo

API

1. Entity Search:

Search relevant entities from DBpedia (2016-10)

API: https://dbpedia.mtab.app/api/v1/search

Parameters:

Example:

The query is Tokyo, and get 20 relevant entities.

Command:

curl --request POST --header "Content-Type: application/json" --data '{"q":"Tokyo", "limit":20}' https://dbpedia.mtab.app/api/v1/search

2. Get entity information:

Get entity information from DBpedia (2016-10). The responded object include DBpedia title, mapping to Wikidata, Wikipedia, label, Aliases, types, pagerank score, entity statements, and literal statements.

API: https://dbpedia.mtab.app/api/v1/info

Parameters:

Example:

Get information of the entity Hideaki Takeda

Command:

curl --request POST --header "Content-Type: application/json" --data '{"q":"Hideaki Takeda"}' https://dbpedia.mtab.app/api/v1/info

3. Table annotation:

Table annotation with MTab4DBpedia.

API: https://dbpedia.mtab.app/api/v1/mtab

Parameters:

Example:

Please refer m_main.py on how to use it.

4. Evaluation:

Submit annotation file (CEA, CTA, CPA), then get the results.

API: https://dbpedia.mtab.app/api/v1/eval

Parameters:

Example:

Please refer m_main.py on how to use it.

5. Numerical labeling

Annotate numerical column of tables with Knowledge Graph properties

API: https://dbpedia.mtab.app/api/v1/num

Parameters:

Example:

Command:

curl --request POST --header "Content-Type: application/json" --data '{"values":[1.50, 1.51, 1.52, 1.53, 1.54], "limit": 5}' https://dbpedia.mtab.app/api/v1/num

or please refer m_main.py for other examples.

Reproduce MTab4DBpedia results:

  1. Clone MTab4DBpedia, and open project

    git clone https://github.com/phucty/mtab4dbpedia.git
    cd mtab4dbpedia
    
  2. Create conda environment, activate, and install mtab4dbpedia

    conda create -n mtab4dbpedia python=3.6
    conda activate mtab4dbpedia
    pip install -r requirements.txt
    
  3. Other setup:

  1. Run experiment for
    • 5 datasets: 4 rounds of SemTab 2019, and Tough Tables (Round 5)
    • 2 datasets version: SemTab 2019 (original), and adapted SemTab 2019 DBpedia 2016-10
      python exp_semtab.py

Datasets:

  1. Original version of SemTab 2019 and Tough Tables
  2. Adapted SemTab 2019 and Tough Tables with DBpedia 2016-10 Note:

To make a fair evaluation, it is important to have the same target DBpedia version because DBpedia change overtime. Additionally, using up-to-date resources also could yield a higher performance since data is more complete than older version. It is unfair with the previous study used the older version of DBpedia.

References

Awards:

Citing

If you find MTab4DBpedia tool useful in your work, and you want to cite our work, please use the following referencee:

@inproceedings{2019_mtab4dbpedia,
  author    = {Phuc Nguyen and
               Natthawut Kertkeidkachorn and
               Ryutaro Ichise and
               Hideaki Takeda},
  title     = {MTab: Matching Tabular Data to Knowledge Graph using Probability Models},
  booktitle = {SemTab@ISWC 2019},
  volume    = {2553},
  pages     = {7--14},
  publisher = {CEUR-WS.org},
  year      = {2019},
}

Contact

Phuc Nguyen (phucnt@nii.ac.jp)